How to Encrypt or Decrypt a string ?

Download Source - 28 Kb (Available Soon)
This example shows that how to encrypt or decrypt a string or number.
For this we will use a class and one c# page.
Encrypt Decrypt page will be as :-

using System;
using System.Collections.Generic;
using System.Security.Cryptography;
using System.IO;
using System.Text;

namespace EncryptionSample
{
    public class EncryptionDecryption
    {
        #region class Variables
        /// <summary>
        /// Class level constants
        /// </summary>
        /// <author>        </author>
        /// <CreatedDate>   </CreatedDate>

        // Passphrase from which a pseudo-random password will be derived. can be any string
        private const string passPhrase = "Pas5pr@se";

        // Salt value used along with passphrase to generate password. can be any string
        private const string saltValue = "s@1tValue";

        // Hash algorithm used to generate password. Allowed values are: "MD5" and
        // "SHA1". SHA1 hashes are a bit slower, but more secure than MD5 hashes.
        private const string hashAlgorithm = "SHA1";

        // Initialization vector (or IV). This value is required to encrypt the
        // first block of plaintext data. For RijndaelManaged class IV must be
        // exactly 16 ASCII characters long.
        private const string initVector = "@1B2c3D4e5F6g7H8";

        // Number of iterations used to generate password. One or two iterations
        // should be enough. can be any number
        private const int passwordIterations = 2;

        // Size of encryption key in bits. Allowed values are: 128, 192, and 256.
        // Longer keys are more secure than shorter keys.
        private const int keySize = 256;

        private string _stringTOEncDec;

        #endregion

        #region Public Methods
        /// <summary>
        /// Public method that get set the input string to be encrypt Decrypt
        /// </summary>
        /// <author>            </author>
        /// <CreatedDate>       </CreatedDate>

        public string InputText
        {
            get
            {
                return _stringTOEncDec;
            }
            set
            {
                _stringTOEncDec = value;
            }
        }
        #endregion

        #region Encrypt
        /// <summary>
        /// Encrypts specified plaintext using Rijndael symmetric key algorithm
        /// and returns a base64-encoded result.
        /// </summary>
        /// <author>            </author>
        /// <CreatedDate>       </CreatedDate>
        /// <ModifiedDate>      </ModifiedDate>
        /// <ModifiedBy>        </ModifiedBy>
        /// <ModificationPurpose></ModificationPurpose>
        /// <param name="plainText">
        /// Plaintext value to be encrypted.
        /// </param>
        /// <returns>Encrypted value formatted as a base64-encoded string.</returns>
        public string Encrypt()
        {
            // Convert strings into byte arrays.
            // Let us assume that strings only contain ASCII codes.
            // If strings include Unicode characters, use Unicode, UTF7, or UTF8
            // encoding.
            byte[] initVectorBytes = Encoding.ASCII.GetBytes(initVector);
            byte[] saltValueBytes = Encoding.ASCII.GetBytes(saltValue);

            // Convert our plaintext into a byte array.
            // Let us assume that plaintext contains UTF8-encoded characters.
            byte[] plainTextBytes = Encoding.UTF8.GetBytes(InputText);

            // First, we must create a password, from which the key will be derived.
            // This password will be generated from the specified passphrase and
            // salt value. The password will be created using the specified hash
            // algorithm. Password creation can be done in several iterations.
            PasswordDeriveBytes password = new PasswordDeriveBytes(
                                                            passPhrase,
                                                            saltValueBytes,
                                                            hashAlgorithm,
                                                            passwordIterations);

            // Use the password to generate pseudo-random bytes for the encryption
            // key. Specify the size of the key in bytes (instead of bits).
            byte[] keyBytes = password.GetBytes(keySize / 8);

            // Create uninitialized Rijndael encryption object.
            RijndaelManaged symmetricKey = new RijndaelManaged();

            // It is reasonable to set encryption mode to Cipher Block Chaining
            // (CBC). Use default options for other symmetric key parameters.
            symmetricKey.Mode = CipherMode.CBC;

            // Generate encryptor from the existing key bytes and initialization
            // vector. Key size will be defined based on the number of the key
            // bytes.
            ICryptoTransform encryptor = symmetricKey.CreateEncryptor(
                                                             keyBytes,
                                                             initVectorBytes);

            // Define memory stream which will be used to hold encrypted data.
            MemoryStream memoryStream = new MemoryStream();

            // Define cryptographic stream (always use Write mode for encryption).
            CryptoStream cryptoStream = new CryptoStream(memoryStream,
                                                         encryptor,
                                                         CryptoStreamMode.Write);
            // Start encrypting.
            cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);

            // Finish encrypting.
            cryptoStream.FlushFinalBlock();

            // Convert our encrypted data from a memory stream into a byte array.
            byte[] cipherTextBytes = memoryStream.ToArray();

            // Close both streams.
            memoryStream.Close();
            cryptoStream.Close();

            // Convert encrypted data into a base64-encoded string.
            string cipherText = Convert.ToBase64String(cipherTextBytes);

            // Return encrypted string.
            return cipherText;
        }
        #endregion

        #region Decrypt
        /// <summary>
        /// Decrypts specified ciphertext using Rijndael symmetric key algorithm.
        /// </summary>
        /// <author>            </author>
        /// <CreatedDate>       </CreatedDate>
        /// <ModifiedDate>      </ModifiedDate>
        /// <ModifiedBy>        </ModifiedBy>
        /// <ModificationPurpose></ModificationPurpose>
        /// <param name="cipherText">
        /// Base64-formatted ciphertext value.
        /// </param>
        /// <returns>Decrypted string value. </returns>
        /// <remarks>
        /// Most of the logic in this function is similar to the Encrypt
        /// logic. In order for decryption to work, all parameters of this function
        /// - except cipherText value - must match the corresponding parameters of
        /// the Encrypt function which was called to generate the
        /// ciphertext.
        /// </remarks>
        public string Decrypt(string cipherText)
        {
            // Convert strings defining encryption key characteristics into byte
            // arrays. Let us assume that strings only contain ASCII codes.
            // If strings include Unicode characters, use Unicode, UTF7, or UTF8
            // encoding.
            byte[] initVectorBytes = Encoding.ASCII.GetBytes(initVector);
            byte[] saltValueBytes = Encoding.ASCII.GetBytes(saltValue);

            // Convert our ciphertext into a byte array.
            byte[] cipherTextBytes = Convert.FromBase64String(cipherText);

            // First, we must create a password, from which the key will be
            // derived. This password will be generated from the specified
            // passphrase and salt value. The password will be created using
            // the specified hash algorithm. Password creation can be done in
            // several iterations.
            PasswordDeriveBytes password = new PasswordDeriveBytes(
                                                            passPhrase,
                                                            saltValueBytes,
                                                            hashAlgorithm,
                                                            passwordIterations);

            // Use the password to generate pseudo-random bytes for the encryption
            // key. Specify the size of the key in bytes (instead of bits).
            byte[] keyBytes = password.GetBytes(keySize / 8);

            // Create uninitialized Rijndael encryption object.
            RijndaelManaged symmetricKey = new RijndaelManaged();

            // It is reasonable to set encryption mode to Cipher Block Chaining
            // (CBC). Use default options for other symmetric key parameters.
            symmetricKey.Mode = CipherMode.CBC;

            // Generate decryptor from the existing key bytes and initialization
            // vector. Key size will be defined based on the number of the key
            // bytes.
            ICryptoTransform decryptor = symmetricKey.CreateDecryptor(
                                                             keyBytes,
                                                             initVectorBytes);

            // Define memory stream which will be used to hold encrypted data.
            MemoryStream memoryStream = new MemoryStream(cipherTextBytes);

            // Define cryptographic stream (always use Read mode for encryption).
            CryptoStream cryptoStream = new CryptoStream(memoryStream,
                                                          decryptor,
                                                          CryptoStreamMode.Read);

            // Since at this point we don't know what the size of decrypted data
            // will be, allocate the buffer long enough to hold ciphertext;
            // plaintext is never longer than ciphertext.
            byte[] plainTextBytes = new byte[cipherTextBytes.Length];

            // Start decrypting.
            int decryptedByteCount = cryptoStream.Read(plainTextBytes,
                                                       0,
                                                       plainTextBytes.Length);

            // Close both streams.
            memoryStream.Close();
            cryptoStream.Close();

            // Convert decrypted data into a string.
            // Let us assume that the original plaintext string was UTF8-encoded.
            string plainText = Encoding.UTF8.GetString(plainTextBytes,
                                                       0,
                                                       decryptedByteCount);

            // Return decrypted string.  
            return plainText;
        }
        #endregion
    }
}

Use this code on CS page :-

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using EncryptionSample;

namespace EncryptionSample
{
    public partial class _Default : System.Web.UI.Page
    {
        EncryptionDecryption objEncryp = new EncryptionDecryption();
        protected void Page_Load(object sender, EventArgs e)
        {

        }

        protected void btnEncrypt_Click(object sender, EventArgs e)
        {
            objEncryp.InputText = txtInputText.Text.Trim();
            txtEncryptText.Text = objEncryp.Encrypt();
        }

        protected void btnDecrypt_Click(object sender, EventArgs e)
        {
            txtDecryptText.Text = objEncryp.Decrypt(txtEncryptText.Text);
        }
    }
}

No comments:

Post a Comment